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Quantum dots (QDs) are an attractive system for quantum information storage and processing in a
network. In a QD, an optically active electron is coupled to neighboring nuclei via the hyperfine interaction,
which can be used to transfer electron spin states to this nuclear register with significantly longer coherence
times, effectively realizing quantum memory. Protocols implementing such a memory are based on accurate
and efficient control of the nuclear spin register. Incidentally, nuclear spin control methods are also vital
to improving electron spin coherence, which is limited by the nuclear Overhauser field — the effective
field arising from the interaction between the central spin and the mean spin polarization of neighboring
nuclei. Nuclear spins are traditionally controlled via nuclear magnetic resonance (NMR), a technique
based on the coupling of a particle’s spin to a radio-frequency magnetic field tuned to the frequency of a
transition between Zeeman-split energy levels. While this method has been fruitful, it is constrained by
the requirement of driving large currents in proximal coils. Our goal is to develop a new way of inducing
nuclear spin transitions in GaAs QDs using nuclear quadrupole resonance (NQR), a method based on the
quadrupolar coupling between the spin-3/2 nuclei and an oscillating electric field gradient (EFG). Two
avenues can be pursued to this end: one uses strain waves, the other uses AC quadrupole antennae etched
onto the GaAs device hosting the QDs. One advantage of the latter is that QDs are addressed locally;
the present work focuses on this approach. We propose an ideal model and simulation results of Rabi
frequencies of nuclear spin rotation for given antenna geometries and QD depth. Furthermore, we show
that electron energy levels can be protected from dipole fields, which might cause undesired DC Stark shifts
on QD charge states and exciton energy. Further work will cover resonant circuit driving of the quadrupole
antennae to reach EFGs sufficient for kHz to MHz Rabi frequencies on the nuclei. Our findings serve as
a proof of concept for a promising alternative to NMR which could be implemented experimentally in the
future.
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1 Introduction

1.1 Background

The advent of quantum computing will yield polyno-
mial or even exponential speedups relative to classi-
cal algorithms, such as in the case of Grover’s and
Shor’s algorithms respectively [1-4], and will also
significantly improve simulations of inherently quan-
tum mechanical systems [5]. Quantum computing
relies on engineering the best possible quantum bit,
or qubit, which is realized using a two-level quantum
system which can be driven using quantum gates [2].
There are numerous two-level systems which can be
used as qubits. For example, one can consider the
energy levels of any spin-1/2 system — such as an
electron — whose energy levels are split by the pres-
ence of a magnetic field, the energy levels of an atom
treated in the two-level approximation, or photon po-
larization. As for quantum gates, in the first case one
can consider the action of magnetic radio-frequency
pulses transverse to a constant magnetic field [6, 7],
in the second case the action of a laser, and in the
third various optical components and even measure-
ment [8].

Currently, the main candidates for qubits include
superconducting qubits [9], photons [10], trapped
ions [11], cold atoms, NV centers in diamond, and
semiconductor quantum dots [12, 13], to which can
be added hybrid platforms such as those based on
rare-earth elements [14]. The present work focuses on
nuclear spin control in quantum dots. Quantum dots
(QDs) are particularly attractive, in that they involve
an electron spin, the epitome of a qubit, which serves
as an ideal source of single and entangled photons
[15-17], and can transfer its state to neighboring nu-
clei, thereby achieving quantum memory [18]. More-
over, QDs are scalable systems and can be organized
in a network, where each node can store information
[19], making them an attractive solid-state platform
for quantum computing.

1.2 Semiconductor quantum dots

There are various ways in which QDs can be formed.
Interface fluctuation QDs can be created sponta-

neously when superimposing semiconductor materi-
als of different bandgaps. Suppose we sandwich a
thin layer of width d of GaAs between barriers of Al-
GaAs. This configuration can be approximated by
an infinite square well, which yields a ground state
energy proportional to d~2. However, there are also
lateral fluctuations at the interface between the GaAs
layer and the AlGaAs, which cause variations of d in
the z-y plane (assuming the planes are superimposed
along the z-axis). Thus, an electron will preferen-
tially be present in the area of lowest energy and will
be confined in all three dimensions [20].

Another way to form QDs is self-assembly by
lattice-mismatched growth, such as in the case of
InAs QDs. In this process, the semiconductor ma-
terial in question is grown on a substrate that has a
slightly different lattice constant, resulting in a mis-
match of crystal lattices. This induces strain in the
former, which consequently minimizes its surface en-
ergy by forming QDs [21].

GaAs, the semiconductor material used in this
study, is formed using droplet etching. Small droplets
of metal, such as gallium, are deposited on a GaAs
material, which is subsequently annealed at a high
temperature, thus causing the diffusion of metal
atoms into the substrate. The GaAs/metal alloy acts
as a template for QDs, which form upon exposing the
substrate to a source of GaAs [22].

The confinement along the growth direction (z-axis
for our purposes) of the semiconductor is stronger
than that in the z-y plane. Thus, we can approxi-
mate the confinement potential for an electron in a
QD by a radially symmetric 2D harmonic potential
[20]. This confinement results in atom-like energy
levels in the QD. However, the semiconductor band
structure remains, and as such emission and absorp-
tion are accompanied by exciton creation and pho-
toluminescence [20]. Therefore, the ground state is
characterized by the presence of one electron, while
in the first excited state the electron is joined by an
exciton, or electron-hole pair; the QD can transition
between different states via photon emission or ab-
sorption [23]. In atomic physics, additional effects
which modify the energy levels of the electron can be
taken into account via perturbation theory. These in-
clude the fine structure, spin-orbit coupling and the
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Figure 1: Illustration of the interactions in a QD.
A central electron-spin qubit (in orange) is coupled
via the hyperfine and dipole interactions with neigh-
boring nuclei (in blue), some of which are used for
quantum memory (in red). The green beam pass-
ing through the central spin represents optical con-
trol and readout of the spin state, while the yellow
coil represents spin manipulation via NMR [24].

hyperfine structure. These additional factors are also
present in QD physics, and the latter enables one to
use QD nuclei as a quantum memory.

1.3 The hyperfine interaction and
quantum memory

In QDs, qubits are realized using a central optically
active electron spin, whose energy levels are Zeeman-
split using a static magnetic field, confined in all di-
rections to length scales of the order of 10 nm and
surrounded by 10* — 10% nuclei [25]. The electron
can thus be driven with electromagnetic radiation,
and its state can be read out using spin selective op-
tical transitions. Electrons in QDs can have coher-
ence times of the order of 0.1 ms [26], whereas nuclei
can achieve coherence times of the order of 10 ms
[27]. Coherence times limit the duration of the to-
tal number of quantum gates in a given algorithm
admissible in experiments, and as such they need to
be maximized in order to satisfy DiVincenzo’s crite-
ria [28]. Using the hyperfine interaction between the

central electron spin and neighboring nuclear spins,
one can induce a spin state transfer from the central
electron to the nuclear spin register. Since nuclei dis-
play significantly longer coherence times, this scheme
can be used to achieve quantum memory [18]. To op-
erate a quantum memory, one needs to make sure
the states transferred to nuclei are preserved. This
can be done by applying dynamical decoupling to the
nuclei, which requires a long series of pulses and as
such efficient spin control. Another manifestation of
the hyperfine interaction is the nuclear Overhauser
field. Indeed, the central electron spin interacts with
at least 10° nuclear spins, which can be accounted
for in a mean-field approach as the interaction of the
electron spin with an effective magnetic (Overhauser)
field [23] generated by the mean nuclear polarization.
This interaction shifts electron energy levels, limits
electron coherence, and must be suppressed under
usual circumstances [27, 29].

Much like in the case of atoms, the hyperfine inter-
action has three contributions: the interaction of the
nuclear magnetic dipole moment with the magnetic
field produced by the relative motion of the electron,
a dipole-dipole interaction, and a contact interaction
due to the fact that the nucleus has a spatial exten-
sion and thus ”overlaps” with the wavefunction of an
electron. Moreover, the latter effect is predominant
in the case of an s-shell electron [30], which is a com-
mon case. The Fermi-contact hyperfine interaction
between an electron and N nuclei in the QD is given
by [23, 30]:

Hog =" S 40w (2028, + [18 + 115.])
J

= How+ Y a, (5. +18,)
J

(1.1)
where 1y is the two atom cell volume, 7} is the
position vector of the j-th nucleus, and we use the
ladder operators for electron spin 5. and nuclear
spin I.. To explain electron spin transfer to nu-
clear spin states, we focus on the spin-flip term, or
collinear term, and denote the Overhauser Hamilto-
nian by H OH-
For N nuclei surrounding a central electron, the



quantum state is a product state. If we start with a
fully polarized nuclear bath and a spin-down elec-
tron, the initial state is given by ||) ® |0) where
|0) = |Io,...,Ip). By driving the electron spin on
resonance with an effective magnetic field account-
ing for Overhauser splitting i.e. working in the
eigenbasis of a Hamiltonian including both Zeeman
and Overhauser fields, we can induce Rabi flop-
ping between states ||) ® |0) and [1) ® |1), where

-1/2
B = (aP) S0 o o~ o o),
thus producing a delocalized single-spin excitation,
or spin wave (magnon) [18, 31]. For a Rabi angular
frequency €2, letting this process go on for t = & leads
to the following transition:

(a[h) +B8) @10) = 1) @ (]0) +iB 1))

Thus, once can effectively map the spin state of the
electron onto the polarization states of the nuclei.
As in the case of the nuclear Overhauser splitting,
nucleus-nucleus dipole interactions act as noise lim-
iting magnon coherence, which further justifies the
development of nuclear spin control methods.

However, in GaAs QDs, the gallium and arsenic
nuclei are spin-3/2 systems. In order to define and
address a single two-level collective nuclear system as
previously described by the |0) and |1) states, the four
energy levels of a given nucleus need to be split into
two-level sub-systems. This can be done by introduc-
ing anharmonicity to the energy levels of a nucleus
using static strain [32].

(1.2)

2 Nuclear
nance

quadrupole reso-

2.1 The nuclear quadrupole Hamilto-
nian

The goal of this work is to control nuclear
spins in semiconductor quantum dots using nuclear
quadrupole resonance (NQR). Traditional methods
of controlling spins are based on nuclear magnetic
resonance (NMR), where one drives spin transitions
using a magnetic radio-frequency pulse to perturb a

Zeeman-split system. The perturbation arises from
the fact that the additional time-dependent magnetic
field couples to the magnetic dipole moment of a par-
ticle which has non-zero spin, which is in turn pro-
portional to the appropriate spin operator via the
gyromagnetic ratio.

In the case of NQR, the perturbation is associated
with the coupling of a nuclear quadrupole moment to
an electric field gradient (EFG). Indeed, the nuclei we
will consider have spin 3/2, and generally systems of
spin I > 1/2 have a quadrupole moment according
to the Wigner-Eckart theorem [7] (see appendix for
derivation) .

The QDs considered here for NQR are GaAs QDs.
The advantage of using lattice-matched GaAs instead
of InGaAs, another platform often used in QD exper-
iments, is the lack of significant static inhomogeneous
strain, which tends to produce unwanted electric field
gradients (EFG) that have to be accounted for in
NQR. Additional EFGs would also limit electron co-
herence [26].

Here, we will look into generating oscillating EFGs
using multipole antennae. Another possible av-
enue for generating time-dependent EFGs uses strain
waves, although this is not discussed here. Multipole
antennae are particularly interesting in that they al-
low control of a specific set of QDs, rather than of
the entirety of a sample.

The models and simulations in this work show that
the quadrupole configuration is optimal for a given
antenna. Indeed, the dipole configuration yields
lower EFGs, while adding electrodes has a negligible
effect on the orders of magnitude predicted. Hence,
we shall exclusively be focusing on quadrupole anten-
nae.

The Hamiltonian considered in NQR is given by a
time-independent contribution, the potential energy
of the nuclear magnetic dipole in the external Zee-
man field, and a time-dependent one, the potential
energy of the nuclear electric quadrupole in a time-
dependent EFG [7, 30, 33]:

R R N R eQ R R
_ —hopl.+———2  [.V()-T (21
H=Hy+Hq = hwr *orer -t (t)-I (2.1)

where w;, = —yB is the Larmor frequency of the



studied nucleus of gyromagnetic ratio v, and we as-
sume that the static magnetic field is of the form
B= Beé,. @ is the quadrupole moment and V is the
EFG at the position of the nucleus.

2.2 Resonant driving of nuclear spin
transitions

We will be driving transitions using a sinusoidal EFG
oscillating close to the frequency of a given spin tran-
sition. We therefore consider an EFG of the form
V coswt.

. eQ ) (jyf) coswt (2.2)

Ho(t) = 2I(2] — 1

According to time-dependent perturbation theory,
considering the following ansatz:

Byt

k)

[$() =D enlt)e (2:3)
k

where Ej, is the eigenvalue of Ho associated with
the eigenstate |k), yields the following differential
equations for suitable n:

. 1eQ
Cp = —
(2.4)
We thus obtain a system of n coupled linear dif-
ferential equations with time-dependent coefficients.
An additional approximation is used to derive ana-
lytical solutions, since we are not necessarily inter-
ested in using any angular frequency w, but rather
resonance frequencies for different transitions. Us-
ing the rotating wave approximation, and applying
the aforementioned result to spin-3/2 nuclei such as
gallium and arsenic, we conclude that driving a tran-
sition from the |i) state to the |j) state implies the
following Rabi frequency:

@ -

=2 |6l 1V 11j) (25)

2.3 Detecting Rabi oscillations

There are already well-established techniques used to
measure Rabi oscillations in a macroscopic nuclear
spin system. In NMR, this can be achieved by deriv-
ing the net magnetization of a sample using the den-
sity matrix formalism, and converting the oscillating
magnetization into a measurable electrical signal [7].
The same ideas can be used for NQR. At thermal
equilibrium at a temperature 7', using the usual con-
stant convention 5 = 1/kgT, the density matrix is
given by:

3
s 0

0
0

00|

1
pPo = ZI‘F Bhwr, (2.6)

Qw—=O O

o O O
®lw O O O

According to previous analysis, the harmonic per-
turbation given by the quadrupole interaction ”ro-
tates” nuclear spin states at an angular frequency
/2. Hence, the density matrix at time ¢ is given by
pr = RpoR where R is the rotation matrix associ-
ated with the nuclear spin transition. We can then
derive the i-the component of the net magnetization
using:

M; =~(I;) =4 Tx (ptfi) (2.7)

i(Bn =Byt PO
m Z € " (n|I-V-I|k) cos (wt)ck For transitions of one unit of spin, this yields:
k

N+¥?R2B (1
MZ = ]{jBiT (1 COS (Qlt) + 1> (28)
For transitions of two units of spin:
N+?h?’B 1
M,=—— Q - 2.
. T cos (Qat) + 1 (2.9)

NQR induces oscillation along the static magnetic
field axis, the z-axis, which doesn’t necessarily coin-
cide with the growth direction of the semiconductor.
At 4 K, the typical temperature at which QD ex-
periments are conducted, this magnetization is neg-
ligible. Rather, nuclei are magnetized by repeatedly
transferring energy from the electron, via dynamic



nuclear polarization. This leads to an effective tem-
perature for the nuclei much lower than 4 K, allowing
the above quantities to be measured.

In the specific case of QDs, one can also use the
Overhauser splitting of the electronic energy levels to
detect Rabi oscillation. Indeed, again using a mean-
field approach to the hyperfine interaction and a sim-
plified, uniform electron wavefunction, one obtains
the following hyperfine interaction Hamiltonian [23]:

(2.10)

We can then use the expressions of M, derived
above and inject it into the following electron transi-
tion energy, taking wr. to be the Larmor frequency
of the electron in the constant magnetic field:

24
AFE =h (CA}LC + ')/]VMZ>

Thus, we can use spectroscopy to verify that the
nuclei are indeed undergoing Rabi flopping [27]. In
practice we’d also need to include longitudinal (spin-
lattice, characteristic time 77) and transverse relax-
ation (spin-spin, characteristic time T5) [30]. These
parameters must be taken into consideration in ex-
periments; for example, the measured signal is re-
duced by a factor of QT after each oscillation.

(2.11)

3 Models and simulations of
EFGs and Rabi frequencies

3.1 Rabi frequencies as a function of
EFG principal component

In this section, we develop a model which predicts
EFGs, and by extension Rabi frequencies for differ-
ent geometries of the apparatus described in the fol-
lowing lines. Since the wavelengths associated with
resonance frequencies are significantly larger than the
dimensions of the quantum dot and electrodes we will
be studying, we opt for a quasistatic approach rather
than a radiation-based study. We will be using elec-
trodes forming a quadrupole with sinusoidally oscil-
lating electric potentials. The quasistatic approach

B Gold electrode at + potential €z B
I Gold electrode at - potential
AlGaAs
B Goid 9
@ Gans quantum dot

Jd
700 nm o

Figure 2: Side view of the system: an AlGaAs sub-
strate with GaAs QDs located on a line of varying
depth d, and four electrodes, each placed at a dis-
tance a from the origin.

allows us to consider at a given time ¢ a Dirichlet
problem with boundary conditions on the electrodes
and a ground plane, which we solve for a potential
distribution, which in turn gives us an EFG. If the
sinusoidal electrode potential is Vi cos wt, we can use
V4 in the boundary conditions for the Dirichlet prob-
lem. Once we've solved for the EFG V' (which one
can check is proportional to the electrode potential
amplitude) we can multiply the solution by coswt
to introduce time dependence. In the sections that
follow, we’ll first introduce a toy model to better un-
derstand the effect of various parameters. We then
present a more realistic model with data produced
using COMSOL multiphysics.

According to Maxwell’s equations, the EFG tensor
is traceless and symmetric, and thus only has five
independent components.

Ve sz Viz
Vi=|Vay Vi Vye (3.1)
Va:z Vyz _VZI - Vyy

In the general case, we consider a magnetic field at
an angle 6 with respect to the z-axis. This is equiva-
lent to the electrode apparatus being rotated around
the z-axis by an angle §. This would yield an EFG



V = Ry (0)VoR.(0)T where R,(0) is the usual rota-
tion matrix about the z-axis.

In practice V., Vs, V,. will be negligible. Indeed,
the antennae we will consider will have axes of sym-
metry along z, y and z, and we can expect the same
axes to coincide with the principal axes of the tensor
(in particular, it is a symmetric tensor, and therefore
diagonalizable).

This yields Rabi angular frequencies 2; and € for
transitions of one and two units of spin respectively:

12h

0y & 2RV, | (cos (20) + 3)

{Ql ~ V3eQ | Vs sin (260)] (3.2)

The two frequencies cannot be equal. Nevertheless,
for § =~ 58°, we can minimize the square distance be-
tween the two and obtain a reasonable compromise.
It might be useful to have distinct Rabi frequencies
so as to be able to experimentally distinguish be-
tween the two transitions upon detection. Neverthe-
less, both frequencies ought to have a similar order of
magnitude, to ensure they are both detectable. We
therefore get the following angular frequencies:

O.IgcQ |sz‘

0
Qp v 218Q 1y |

According to (3.2), in order to achieve Rabi fre-
quencies of 1 MHz, one needs to produce an EFG of
the order of 102! Vm~—2. Frequencies of the order of
a megahertz are interesting, in that they allow over
10000 quantum gates to be applied within 10 ms, a
coherence time reachable for nuclei. In practice, this
EFG requires very high voltages on the electrodes,
of the order of a megavolt, which in turn suggests
a spacing between 10 nm and 100 nm through di-
mensional analysis as a first guess. These voltages
are extremely hard to maintain. For comparison, the
breakdown voltage of air for an electrode separation
of the order of 100 nm is only around 0.3V, while
that of a perfect vacuum is 10! V. In practice, high
vacuums can achieve breakdown voltages of the order
of 10 to several 100 V. This is still very low compared
to the target voltages, and it seems these can only be
achieved under idealized conditions.

Q

(3.3)

3.2 A toy model

Let’s consider a sphere of surface potential V; and
radius R. Suppose the electric potential cancels
at infinity. The unique solution to this problem
(Laplace equation with Dirichlet boundary condi-
tions) in spherical coordinates is:

_WR
T

This gives the following EFG for four electrodes in
a quadrupole configuration:

V(r) (3.4)

GRVUG,25 0 0
(a®+d?)2
V= 0 _ 6Rvoa2é 0 (3.5)
(a+d?) 3
0 0 0

we can then use (3.2) in conjunction with (3.5) to
determine the Rabi frequency. In order to reach opti-
mal transition times, the principal component of this
EFG needs to be maximized. Clearly, V., decreases
with d. However, for fixed d, there exists a value of
a which maximizes the EFG and the Rabi frequency.

We have:
o0 2
— =0<=a=1/=d
da “ \/;

Thus, the optimal solution in a gives a dependence
in d—3 of the Rabi frequency.

(3.6)

3.3 A realistic model
3.3.1 Cubic electrodes

Although the previous model is a simplified version
of the realistic electrodes, we can draw inspiration
from it to propose a more general function which fits
COMSOL predictions relatively well. In all the simu-
lations, we use voltage amplitudes of 1 V, in order to
predict Rabi frequencies per electrode voltage, since
one can simply multiply the result by the desired am-
plitude to generalize to an arbitrary case.
We use the following ansatz for the EFG:

(a— 02)2

((a =2+ (d = e)?)

sz =C

e



where c1, o and c3 are fitting parameters. We then
use the method of least squares to approximate the
data generated using COMSOL.

Thus, once we simulate the EFG, we can use the
previous analysis and consider a time-dependent per-
turbation of the same form as (2.2). Since the nuclei
in the QDs studied in this work are gallium and ar-
senic, and their quadrupole moments are of the same
order of magnitude, one can focus on the naturally
abundant gallium isotope without loss of generality.
For this isotope, @ = 165mb = 1.65 - 1072 m? [34].

We first consider the closest situation to that of
the toy model achievable using electron-beam lithog-
raphy. Indeed, the electrodes are made using gold de-
posited on the semiconductor substrate, and as such
the geometry has to be invariant along the growth
axis. Thus, one can start by considering cubic elec-
trodes of side 100 nm and 10 nm for example, to
gauge how the relevant quantities scale with electrode
size.

Figure 3 shows that the COMSOL results can be
approximated very well by a function that varies like
in the spherical case. The fit is better for smaller
electrodes, since it approaches a point-like scenario,
which is equivalent to a sphere according to Gauss’s
theorem. Furthermore, the geometric parameters
yielding optimal EFGs in figure 4 fit the ideal theory
remarkably well, and the divergences at lower depth
can be explained by the fact that the optimal config-
uration for the electrodes can no longer be reached
because the electrodes are too big in the 100 nm case.
The same explanation can be given for differences ob-
served in figure 5. Moreover, figure 6 shows that the
previous estimate for the electrode separation was too
optimistic, since even 10-100 nm separation fails to
yield megahertz-range Rabi frequencies.

3.3.2 Elongated electrodes with pointed ex-
tremities

Here, we consider electrodes with a higher degree
of anisotropy. The quadrupole electrodes consid-
ered here are elongated, cuboid-like with a pointed
extremity, pointing towards the area where the ad-
dressed QDs are. The electrodes that are studied here
have a height of 100 nm, a length of 200 nm, and a

a) Largest component of EFG (100 nm electrodes)

. simulation
B theory (normalized RMSE = 0.011)

100
150

200
E’Ect,(,d 250
epos,-%n (300 350
nm)

400 0

b) Largest component of EFG (10 nm electrodes)

. simulation
mmm theory (normalized RMSE = 0.003)

Figure 3: EFG as a function of antenna geometry.
Electrode position refers to the distance between the
origin and the center of a given electrode. The RMSE
is dimensionless and normalized to the spread of the
EFC values. a) ¢; =2.38-1077,c2 =0, c3 = 0. b)
c1=229-1078, ¢, =0, c3 =0 SL



a) Geometric configuration for optimal EFG (100 nm electrodes) a) Optimal EFG (100 nm electrodes)

— simulation —— simulation
~—— theory —— theory
250 164
E 200
£
c & 151
£ 13
8 150 N
b =
3 >
g 8 144
o 100 kS
w
0 13
0 T T T T T T T T 121
0 50 100 150 200 250 300 350 . . . . . . . .
QD depth (nm) 0 50 100 150 200 250 300 350
. . N D depth (nm
b) Geometric configuration for optimal EFG (10 nm electrodes) QD depth {nm)
300 1 __ gmulation b) Optimal EFG (10 nm electrodes)
—— theory —— simulation
250 —— theory
15
E 200
c
2 < 149
@
g 150 £
3 =
E By
o S 134
& 100 S
50
12
0
T T T T T T T T
0 50 100 150 200 250 300 350 11
QD depth (nm) T T T T T r T T
0 50 100 150 200 250 300 350

QD depth (nm)
Figure 4: Position of electrodes maximizing the EFG

for a given QD depth. . . .
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Figure 6: Rabi frequencies for nuclear spin transitions
(of one or two units of spin) at a given QD depth for
optimal EFGs and cubic electrodes of 10 nm or 100
nm.
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Figure 7: Quadrupole antenna with elongated elec-
trodes (COMSOL).

pointed extremity of height 100 nm. In this section,
the position of an electrode refers to the distance be-
tween the origin and a given electrode’s pointed tip
(figure 7).

Admittedly, this case is less symmetric than the
previous one, but we can still try to fit a similar
model. In fact, we can use the spherical toy model,
and suppose that a given electrode can be approxi-
mated fairly well by a set of spheres arranged along a
line. This case can be solved analytically, and yields
the following EFG, p being the number of spheres
representing an electrode:

6pRV, (2(p — 1)R + a)®

5

@ﬂp_nR+af+dﬂ5

sz =

(3.8)

The length of a given electrode in this model is
L = 2Rp. Thus, ignoring the constant factor, this
function behaves as though the center of charge of
the system were in the furthest sphere.

The maximum EFG is achieved for

a:\/gdfﬂpfl)R:\/gdf

Thus, in order to observe a maximum, we approx-
imately need L < d. We will use R = % where w

p—1
—L 3.9
5 (3.9)

w

2



Largest component of EFG

mmm simulation
= theory (normalized RMSE = 0.009)

10g10| Vx| (V/im?2)

Figure 8: EFG as a function of antenna geometry.
Electrode position refers to the distance between the
origin and the tip of a given electrode. The RMSE
is dimensionless and normalized to the spread of the
EFG values. ¢; = 4.69 - 1072, ¢, 6.46 - 1078,
cg =—1.50-1079 SL.

is the width of the electrodes used in the model, and
P= 35

In this case as well, figures 8 and 9 suggest that
this model adequately predicts EFGs. Furthermore,
figure 9 confirms the offset predicted by (3.9) relative
to the cubic case, and we observe divergences from
the theoretical model for small depth, in accordance
with the requirement L < d.

4 Experimental considerations

4.1 Resonant circuit driving of the an-
tenna

In order to achieve the highest possible voltages for
the quadrupole electrodes using lower generator volt-
ages, experiments will need to make use of resonant
circuits. To this end, we also need to know the capac-
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a) Geometric configuration for optimal EFG

—— simulation
~——— theory
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b) Optimal EFG

500 600

—— simulation
—— theory

16

15

14

13

10g10|Vix| (VIM?)

12

11

300 400 500 600 700

QD depth (nm)

100 200

Figure 9: a) Position of electrodes maximizing the
EFG for a given QD depth. The offset of the approx-
imating affine function is correctly predicted using
(3.9) for p = 2 i.e. the number of spheres of width
100 nm one can fit on a line of 200 nm, the exact
dimensions of the electrodes. b) Maximum EFG for
given QD depth.



Maximum Rabi frequency per electrode voltage

—— 1 unit of spin
~——— 2 units of spin

log Rabi frequency per electrode voltage (Hz/V)

—

0 100 200 300 400 500 600 700
QD depth (nm)

-4

Figure 10: Rabi frequencies for nuclear spin transi-
tions (of one or two units of spin) at a given QD depth
for optimal EFGs and elongated electrodes.

itance between electrodes, and between an electrode
and the ground plane. However, the net charge of the
quadrupole antenna perceived by the ground plane
is approximately zero, which means that the ground
plane gets a negligible charge in practice. Hence, we
will only focus on electrode-electrode capacitances.

Let us first return to our toy model to predict ca-
pacitance as a function of the position parameter a
of the electrodes. Having computed the electric field
generated by the apparatus, we can calculate the sur-
face charges appearing on the electrodes, which are
treated as ideal conductors. The interface conditions
for electromagnetic fields yield:

S = o

E-En,=E=—"1ii 4.1
er () €0 (41)
Hence, the total charge appearing on an electrode

is given by the following integral over its surface:

Q=¢o # e, () E - AdS (4.2)

The capacitance between two given electrodes can
be deduced from this by using C = -2 where Vj is

2V
the absolute value of the voltage bound%ry condition
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on an electrode. We use the spherical toy model to
approximate the cubic case as in the previous cases.
We considering a single sphere at position 7 and use
spherical coordinates, 7i = 7 (6, ¢). We suppose that
a surface S of a given face of the cube/sphere is suf-
ficiently small, such that:

Q=ereg(E, (F+e:)+ E. (F—¢.))
3
+e0 Y E(F+a) i (5
n=0

This approximation yields a very long formula.
Nevertheless, we can Taylor expand for R — 0:

_eo(er+5)S N £0SR  V2e (e, — 1) SR

¢= 2R 4a? 4a’
€0 (34¢&.)SR?  3¢0SR3? 4
16a3 16a* +50 (R
(4.4)
Using S = 4R?%:

3 2 T'_]- 4
C:250(5T+5)R+€(5§ _ Y20l =D R

o (3+ R*
+ 0 ( E'!’)
4a3

a3
+ 0 (R°)
(4.5)
Using COMSOL to numerically calculate (4.2), we
get the plots in figures 11 and 12. We also consider
(4.5) as a function of a and determine the constants

which best fit the data numerically. The models used
in figure 4 are of the form:

350R5
+
4a4

ke ks | ke | ks

C=hit o+ 5+ 0+ (4.6)

where k1, ko, k3, k4 and ks are given in the captions
of figures 11 and 12.

For an RLC series circuit where the output is the

voltage measured at the capacitor (the electrodes),
the gain is given by:

1

Gw) =
\/(1 — LOw?)? + R2C2w?

(4.7)




le—18 a) Electrode-electrode capacitance (100 nm)
—— simulation
251 ~——— theory (normalized RMSE = 0.001)
2.0
o
g 1.5
c
bt
S
3
& 1.0
o
0.5 A
0.0 A
100 150 200 250 300 350 400
Electrode position (nm)
le—19 b) Electrode-electrode capacitance (10 nm)
—— simulation
2.51 —— theory (normalized RMSE = 4e-05)
2.0
£
2 1.5
S
=
bt
3
2 1.0
5
o
0.5 A
0.0

150 200 250 300 350 400

Electrode position (nm)

50 100

Figure 11: RMSE is dimensionless and normalized
to average capacitance. a) Theory and simulation
of capacitance between two oppositely charged cu-
bic electrodes of side 100 nm, charge calculated using
one electrode. ki = 2410718 ky = —5.3 - 10732,
ks = 1.3-10738 k4 = —83-107%6 ks = 0 (SI
units). b) Theory and simulation of capacitance
between two oppositely charged cubic electrodes of
side 10 nm, charge calculated using one electrode.
k1 =19-1071 ky = 5910735, kg = —8.2- 1073,
ky=1.9-107% ks = 0 (SI units).
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Figure 12: RMSE is dimensionless and normalized
to average capacitance. Theory and simulation of
capacitance between two oppositely charged elon-
gated electrodes of length 200 nm, width 100 nm and
pointed extremity of height 100 nm, charge calculated
using one electrode. k; = 2.2-107'%, ky = 6.4-10733,
k3 =-29-10"% k; =4.1-107*% ks = —1.8- 10756
(ST units).



where R and C are fixed by the transmission line
and the capacitances modeled and simulated previ-
ously. Another parameter is the resonance frequency,
wo , which is fixed by the nuclear spin transitions
considered i.e. the static magnetic field and the gy-
romagnetic ratio of the nuclei. For an RLC, we there-
fore have:

1 R?
2
= 4.
T Ie 2t (48)
Solving for the inductance gives:
L=+ 1 aponr.  (9)
2Cw? 2Cw? res

res res

The minus solution gives a small gain. We thus
keep the plus solution. The capacitances plotted pre-
viously have a maximum. This can be determined
analytically by canceling the derivative of the model.
One ought to position the electrodes at the corre-
sponding position, in order to minimize the induc-
tance L necessary to drive the system at the resonant
frequency. For a frequency of a megahertz, maximal
capacitance for the 100 nm electrodes, B of the order
of a tesla, this yields L =~ 100 H. Plugging the induc-
tance formula into (4.7), and taking into account the
fact that RCwy is small, we arrive at:

1
B RCwo

This is of the order of 10® in the scenario described
above. In theory, we could reach the megavolt range
and thus megahertz Rabi frequencies for a generator
giving off a signal with an amplitude of 10 mV.

(4.10)

4.2 Canceling dipole fields

From an electromagnetism standpoint, AlGaAs is a
nonlinear material, and as such the polarizability vec-
tor does not depend linearly on the electric field. This
means that nonzero dipole fields can appear at the
QD level, despite the electrode electric field being
zero (see figure 13). These dipole fields will need to
be canceled. Indeed, they can cause Stark shift of the
electron energy levels, which we need to keep fixed.

a) Dipole field at a given QD depth (cubic)

200000 —— 100 nm
10 nm
0 A _
200000
=
o
—-400000
—600000
(I) ldO 2(’)0 3(50 460 560 6[‘)0 760
QD depth (nm)
1e6 b) Dipole field at a given QD depth (pointed)
6
4
E
s 2
o
0
-2
0 100 200 300 400 500 600 700
QD depth (nm)

Figure 13: Dipole fields appearing along the z-axis
due to the polarizability of AlGaAs: a) for cubic elec-
trodes b) for elongated pointed electrodes.



This can be remedied using a thin layer of gold cover-
ing the bottom of the semiconductor chip, such that
the top surface is at a certain potential, and the lower
one is the ground. If we want to cancel a field E, at
the QD level, one can use a potential Vo = E,(z0—21)
where zg is the position of the ground and z; the po-
sition of the plane at nonzero potential. According to
COMSOL simulations, the dipole fields are bounded
by E, =1 MV/m. If we take zg — 21 = 10 nm, the
necessary voltage is Vy = 0.01 V. In practice, dipole
fields need to be limited to 1 mV /500 nm, which ap-
proximately corresponds to shifting the exciton by
one optical linewidth. This means that we can opt
for an even smaller voltage. Furthermore, if the QDs
are deep enough, at a depth of the order of 100 nm,
which is usually the case in practice, then the dipole
fields are of the order of 1 kV/m. Hence, at a suffi-
cient depth, nothing needs to be done to counteract
dipole fields.

5 Conclusion

Our findings show that NQR is theoretically feasible
for driving nuclear spin transitions. We have shown
that an AC quadrupole antenna etched onto an Al-
GaAs sample can be used to drive QD nuclear transi-
tions locally, and one could imagine an array of these
quadrupoles on a semiconductor chip. The models
and simulations presented here can aid experimental-
ists in the practical implementation of this system.
Previous sections have shown that the main chal-
lenges in NQR are related to obtaining sufficiently
high Rabi frequencies and avoiding unwanted dipole
fields in the material. Indeed, transition times need
to be sufficiently low for efficient computation and
coherence, while electric fields may shift the energy
levels of the QD electron, which are meant to be kept
fixed. The latter can be dealt with using a thin sheet
of gold which produced an approximately constant
electric field counteracting fields which appear at the
QD level, while more work needs to be undertaken to
address the former. We’ve addressed resonant circuit
driving briefly, but this still requires very high volt-
ages on the electrodes relative to the relevant break-
down voltages, regardless of the generator being sub-
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ject to lower amplitudes thanks to the gain.

As mentioned previously, one could also imple-
ment NQR using strain waves which generate time-
dependent EFGs. This will be addressed in future
work.

6 Appendix: Derivation of the
quadrupole Hamiltonian

In this section, we derive the classical potential en-
ergy of an electric quadrupole in an electric field. We
first derive the quadrupole moment tensor.

Consider a charge distribution {(g;, OP;)}. We
measure the field produced by the charges at a point
M such that for all i, OP; < OM where O is a point
in the domain of the charge distribution. This yields
the following expansion of the electric potential (V is
no longer used for the EFG here):

_ 1 4 _ 1 Z qi
4meq - P,M  4meg - ||P:O + OMH 6.1)
. Q j-OM  OM-Q-OM
T AnegOM | dmeqOM3 8megOM>
We've derived the monopole, dipole and

quadrupole terms respectively, using the follow-
ing tensors:

Q = Zz qi
p=>,;40PF (6.2)
Q=% a (30?%-@07%7013,?[)

where I is the rank 2 identity tensor. Let’s

now turn our attention to the potential energy of a
quadrupole in an electric field E,. Here O is the ori-
gin of the coordinate system, and S is a point in the
charge distribution domain. Let’s consider the dis-
tance between the quadrupole and the source to be
much greater than the dimensions of the quadrupole.



need only calculate its spherical components Q((IQ) for

o ~ o —2 < q < 2. According to the transformation rules

B, = Z %V (0F) = Z V(05 + SP) from cartesian to spherical components (not to be
confused with the classical spherical coordinates), we

"“Z%( OS +VV. SP+ SP VvV . SP) then have:

| . .
=QV-p-E+3) aSP-VV-SP 3 .
221': (111Q7 [1.1) = \[ S (11| Qu: [1.1) =\ 5eQ

(6.3) (6.8)

According to the Wigner-Eckart theorem [33],
Q® x T? where T is the irreducible spherical
tensor of rank 2 constructed using the spin vector
operator (see Sakurai for how to construct spheri-
cal tensor operators using spherical vector operators),
and Q® is the quadrupole tensor represented as an
Q V2 — qu (3x]xk[v Vi 5jk[V2V]jk) irreducible spherical tensor operator. Naming « the

proportionality factor:

where we’ve introduced the total charge @ and the
electric dipole moment [i as defined previously. The
last ingredient is the following calculation (which uses
the Einstein summation convention):

- Z a (3SPZ- V2V . ST — TrV2V>

3
(6.4) \/;eQ = o (L1737 |1.1)
The term with the trace is zero because of the ( )
I,I 2[ I I+ 141 I,1
Maxwell-Gauss equation: all 1| <\/6 et P ) 5D
A 1. . 1
X = % (1,1 <21§ — gLl 51 ) I1,1)
> aSP;-V*V - SP; = 39 V2V (6.5)
i - - Y rer-1
7 ( )
Thus, we finally have (6.9)
Hence a = 1(3?7621) Incidentally, this proves that
E,=QV —p- E+ EQ - Vv (6.6) only nuclei of spin I > 1/2 can exhibit an electric
6~ quadrupole moment. This yields:
Hence the following quadrupolar contribution (us-
ing the V notation for the EFG): (2) 3eQ 7(2) 1
@ TIRI-1) (6.10)

1
Bpq = BQ v (6.7) We need to include the other components of T2

While the EFG is referred to as the gradient of the for the remaining calculations [30, 33]:
electric field, it is actually defined as the Hessian of

the electric potential (hence the absence of a minus 3eQ 1

sign). QP = < J = ) - >
The last step to understanding the quadrupole VeI(2I - 1) 2

Hamiltonian in (2.1) is the Wigner-Eckart theo- (6.1

rem. We define the quadrupolar moment by eQ =

(I,I1Q..|I,I) [30]. Because the quadrupole ten- 9 3e f e s s

sor is an irreducible spherical tensor of rank 2, we Q( = WQ,D (Ii[z + Iin.) (6.12)
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Q(2> _ 3eQ
279121 1)

(1)

(6.13)

Next, we express the EFG tensor in spherical com-

ponents. The EFG tensor is a rank-2 spherical ten-
sor (traceless and symmetric via Maxwell’s equa-
tions). Hence, its spherical components are given by
the cartesian to spherical component transformations

[33]:

v = \/gvzz (6.14)
v =3V, —iV,. (6.15)
v = @ + iV, (6.16)

We finally get the result by contracting the spheri-

cal tensors according to their appropriate contraction
rules (different from cartesian tensor rules):

2
1 eQ A
HA == 1)@y @ - __ =<  [1.yv.]
@ 6q=Z_( V1@V srei -1’ Y
(6.17)
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